Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2311529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154114

RESUMO

A practical and effective approach to improve the cycle stability of high-energy density lithium metal batteries (LMBs) is to selectively regulate the growth of the lithium anode. The design of desolvation and lithiophilic structure have proved to be significant means to regulate the lithium deposition process. Here, a fluorinated polymer lithiophilic separator (LS) loaded with a metal-organic framework (MOF801) is designed, which facilitates the rapid transfer of Li+ within the separator owing to the MOF801-anchored PF6 - from the electrolyte, Li deposition is confined in the plane resulting from the polymer fiber layer rich in lithiophilic groups (C─F). The numerical simulation results confirm that LS induces a uniform electric field and Li+ concentration distribution. Visualization technology records the behavior of regular Li deposition in Li||Li and Li||Cu cells equipping LS. Therefore, LS exhibits an ultrahigh Li+ transference number (tLi + = 0.80) and a large exchange current density (j0 = 1.963 mA cm-2). LS guarantees the stable operation of Li||Li cells for over 1000 h. In addition, the LiNi0.8Co0.1Mn0.1O2||Li cell equipped with LS exhibits superior rate and cycle performances owing to the formation of LiF-rich robust SEI layers. This study provides a way forward for dendrite-free Li anodes from the perspective of separator engineering.

2.
Chem Soc Rev ; 52(15): 5255-5316, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462967

RESUMO

Lithium-based rechargeable batteries have dominated the energy storage field and attracted considerable research interest due to their excellent electrochemical performance. As indispensable and ubiquitous components, electrolytes play a pivotal role in not only transporting lithium ions, but also expanding the electrochemical stable potential window, suppressing the side reactions, and manipulating the redox mechanism, all of which are closely associated with the behavior of solvation chemistry in electrolytes. Thus, comprehensively understanding the solvation chemistry in electrolytes is of significant importance. Here we critically reviewed the development of electrolytes in various lithium-based rechargeable batteries including lithium-metal batteries (LMBs), nonaqueous lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), lithium-oxygen batteries (LOBs), and aqueous lithium-ion batteries (ALIBs), and emphasized the effects of interactions between cations, anions, and solvents on solvation chemistry, and functions of solvation chemistry in different types of electrolytes (strong solvating electrolytes, moderate solvating electrolytes, and weak solvating electrolytes) on the electrochemical performance and redox mechanism in the abovementioned rechargeable batteries. Specifically, the significant effects of solvation chemistry on the stability of electrode-electrolyte interphases, suppression of lithium dendrites in LMBs, inhibition of the co-intercalation of solvents in LIBs, improvement of anodic stability at high cut-off voltages in LMBs, LIBs and ALIBs, regulation of redox pathways in LSBs and LOBs, and inhibition of hydrogen/oxygen evolution reactions in LOBs are thoroughly summarized. Finally, the review concludes with a prospective outlook, where practical issues of electrolytes, advanced in situ/operando techniques to illustrate the mechanism of solvation chemistry, and advanced theoretical calculation and simulation techniques such as "material knowledge informed machine learning" and "artificial intelligence (AI) + big data" driven strategies for high-performance electrolytes have been proposed.

3.
Dalton Trans ; 50(47): 17723-17733, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812458

RESUMO

Cathodes derived from metal-organic framework materials offer unique advantages in terms of improved structural reversibility and electron conduction efficiency. Nevertheless, the capacity contribution of cathodes based on the carbon framework system has not been clearly discussed or is controversial in aqueous batteries. In this essay, we have uncovered the capacity contribution arising from the adsorption of anions/cations onto the carbon surface by examining the bonds of the carbon and the details of unsteady voltage in the CV/GITT during the discharge. Benefiting from the synergistic contribution of the double-layer capacitance and pseudocapacitance, Zn/C-MnO2 exhibits excellent long-cycling stability and fast kinetics. To the best of our knowledge, this is the first report on the ion adsorption-based double layer effect in aqueous zinc ion batteries. Such a capacity contribution mechanism, and a renewed knowledge of the discharge mechanism, will contribute to the development of high-performance aqueous zinc ion batteries.

4.
ACS Nano ; 13(10): 12137-12147, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31593436

RESUMO

Rationally constructing inexpensive sulfur hosts that have high electronic conductivity, large void space for sulfur, strong chemisorption, and rapid redox kinetics to polysulfides is critically important for their practical use in lithium-sulfur (Li-S) batteries. Herein, we have designed a multifunctional sulfur host based on yolk-shelled Fe2N@C nanoboxes (Fe2N@C NBs) through a strategy of etching combined with nitridation for high-rate and ultralong Li-S batteries. The highly conductive carbon shell physically confines the active material and provides efficient pathways for fast electron/ion transport. Meanwhile, the polar Fe2N core provides strong chemical bonding and effective catalytic activity for polysulfides, which is proved by density functional theory calculations and electrochemical analysis techniques. Benefiting from these merits, the S/Fe2N@C NBs electrode with a high sulfur content manifests a high specific capacity, superior rate capability, and long-term cycling stability. Specifically, even after 600 cycles at 1 C, a capacity of 881 mAh g-1 with an average fading rate of only 0.036% can be retained, which is among the best cycling performances reported. The strategy in this study provides an approach to the design and construction of yolk-shelled iron-based compounds@carbon nanoarchitectures as inexpensive and efficient sulfur hosts for realizing practically usable Li-S batteries.

5.
RSC Adv ; 9(6): 3081-3091, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518951

RESUMO

Spinel LiNi0.5Mn1.5O4 shows promise as a potential candidate for Li-ion batteries due to its high energy density and high rate performance. However, LiNi0.5Mn1.5O4 (LNMO) spinel oxides usually deliver poor cycle life because of the increasing impedance and gradually dissolving Mn resulting in the destruction of crystal structure. Here, a conductive polymer poly-(3,4-ethylenedioxythiophene) (PEDOT) surface modified strategy is introduced to settle the above challenges. The main purpose is to construct a uniform and dense shell film on the surface of LiNi0.5Mn1.5O4 (Industrial Grade), which is prepared by a simple chemical in situ oxidative polymerization method. The Mn dissolving from the lattice during the long-term cycling is well inhibited as the polymer shell protects LiNi0.5Mn1.5O4 from direct exposure to the highly active electrolyte. As expected, the 3 wt% poly-(3,4-ethylenedioxythiophene) coated sample reveals long cycle life with acceptable capacity of 114.5 mA h g-1 and high capacity retention of 91.6% after 200 cycles, compared to 70.9 mA h g-1 and 56.5%, respectively, for the bare LiNi0.5Mn1.5O4 sample. Furthermore, the coated sample demonstrates a higher capacity of 110 mA h g-1 and 63 mA h g-1 at 5C and 10C rate respectively. The improved performance is believed to be attributed to the formation of high conductivity and stable interface structure between electrolyte and LNMO, which is beneficial to suppress the destruction of crystalline structure due to the Mn dissolution and undesired side-reaction between electrolyte and LiNi0.5Mn1.5O4 in long cycle, and improve simultaneously the conductivity and interface stability of LiNi0.5Mn1.5O4 for high voltage lithium-ion batteries.

6.
Nanoscale ; 10(47): 22601-22611, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480697

RESUMO

Constructing an interlinked three-dimensional conductive carbon structure as a sulfur host is considered to be an effective strategy for suppressing the capacity decay over long-term cycling and improving the rate performance of lithium-sulfur (Li-S) batteries, because it can not only facilitate rapid electronic and ionic transportation in the cathode, but also be conducive to confine lithium polysulfide (LiPS) dissolution and shuttling. In this report, we designed a novel 3D conductive network structure (CNTs/Co-NC), which is composed of Co-NC (cobalt embedded in an N-doped porous carbon composite) derived from ZIF-67 polyhedra and inserted carbon nanotubes (CNTs), and applied it as a sulfur host for Li-S batteries. The CNT/Co-NC network structure is firstly prepared via the in situ nucleation of small ZIF-67 crystals on the surface of CNTs and eventually grown into CNT/ZIF-67 hybrid materials; after subsequent carbonization and infiltration of sulfur procedures, the S@CNT/Co-NC cathode is obtained. Li-S batteries based on the S@CNT/Co-NC cathode show an improved rate capability of 772.6 mA h g-1 at the 2 C rate, enhanced long cycling stability under a large current density with a low capacity decay rate of ∼0.067% per cycle at the 0.5 C rate after 500 cycles and ∼0.072% per cycle at the 1 C rate after 700 cycles and an excellent coulombic efficiency of about 95% up to 500 cycles at 0.5 C and 91% up to 700 cycles at 1 C. The superior performance of S@CNTs/Co-NC should be ascribed to the rapid charge transfer, excellent electron conductivity, improved adsorption capability for LiPSs and enhanced redox kinetics of this 3D conductive network structure.

7.
ACS Appl Mater Interfaces ; 6(19): 16888-94, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25225881

RESUMO

In this study, Li-rich cathode, 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 was synthesized by a resorcinol formaldehyde assisted sol-gel method for the first time. Then, the surface of the as-prepared Li-rich cathode was modified with different amounts of LiNi0.5Mn1.5O4 (5, 10, and 20 wt %) through a simple dip-dry approach. The structural and electrochemical characterizations revealed that the spinel LiNi0.5Mn1.5O4 coating not only can prevent electrolytes from eroding the Li-rich core but also can facilitate fast lithium ion transportation. As a result, the 20 wt % coated sample delivered an initial discharge capacity of 298.6 mAh g(-1) with a Coulombic efficiency of 84.8%, compared to 281.1 mAh g(-1) and 70.2%, respectively, for the bare sample. Particularly, the coated sample demonstrates a Li storage capacity of 170.7 mAh g(-1) and capacity retention of 94.4% after 100 cycles at a high rate of 5 C (1250 mA g(-1)), showing a prospect for practical lithium battery applications. More significantly, the synthetic method proposed in this work is facile and low-cost and possibly could be adopted for large-scale production of surface-modified cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...